C-Glycopyranosides from the Reaction of Acetylated Glycals with β-Diketones

Sadamu Yougai and Toshio Miwa*

Faculty of Science, Osaka City University, Sumiyoshiku, Osaka 558, Japan

Acetylated glycals react with some β -dicarbonyl compounds in the presence of boron trifluoride or bis(benzonitrile)dichloropalladium to give *C*-glycopyranosides.

The boron trifluoride-catalysed reaction of acetylated glycals with protic nucleophiles is known as the Ferrier reaction and is used for the preparation of *O*-glycosides.¹ Recently, the carbonium ion (1, $R = CH_2OAc$), a supposed intermediate in the Ferrier reaction, was trapped with 1-trimethylsilyloxy-styrene in order to investigate *C*-glycosidation reactions.²

We have found that some β -dicarbonyl compounds react with acetylated glycals in the presence of a boron trifluoride or bis(benzonitrile)dichloropalladium[†] catalyst to give C-glycosides.[‡]

A solution of di-O-acetylxylal (1 mmol) in acetylacetone (4 mmol) was allowed to react in the presence of BF_3 ·Et₂O (0.5 mmol) for 15 min, or in the presence of Pd(PhCN)₂Cl₂ (0.004 mmol) for 13 h, at room temperature to give an anomeric mixture (7:1) in 55 or 76% yield, respectively. On hydrogenation, the major product (2) gave a dihydro-compound with a

Table 1. The reactions of acetylated glycals with β -dicarbonyl compounds.^a

β-Dicarbonyl compound	O-Acetylated glycal	Catalyst ^b (mol%)	Yield %	α:βRatio ^c
Acetylacetone	Glycal	A (0.26)	83	46:1
,,	"	B (50) ^d	73	5:1
,,	Galactal	A (10)	59	α only
••	,,	B (50) ^d	72	α only
,,	Allal	A (1)	62	5:1
,,	,,	B (50) ^d	81	5:1
Methyl acetoacetate	Glucal	A (1)	85	4:1
	Xylal	A (0.1)	65	1:4
Ethyl benzoylacetate	Galactal	A (110)	65	α only
Ethyl 2-oxocyclohex-	,,	B (50)	81	α only
anecarboxylate	Glucal	A (110)	82	е
,,	,,	B (50)	82	e

^a The reactions were carried out as described in the text for diacetylxylal. ^b A: Pd(PhCN)₂Cl₂. B: BF₃. ^c The ratio was estimated by n.m.r. spectrometry. ^d Benzene was added to form a solution. ^e Undetermined.

 $J_{4,5a}$ value of 10.8 Hz in its ¹H n.m.r. spectrum, while the minor product (3) gave a dihydro-compound with $J_{4,5a}$ 0.6 Hz. Therefore, the major product has the β -configuration at the anomeric centre and the minor product the α -configuration.

[†] The palladium complex also catalysed O-glycosidation; e.g., allowing di-O-acetylxylal (1 mmol) to react with methanol (2 mmol) in benzene in the presence of the Pd complex (0.1 mmol) for 13 h gave 83% of methyl 4-O-acetyl-2,3-dideoxy-D-glycero-hex-2-enopyranosides³ (α : β = 1 : 4). PdCl₂ was used as a catalyst for O-glycosidation.⁴

[‡] That C-glycosidation has taken place is shown by the absence of the acetal carbon signal in the 13 C n.m.r. spectra of the product.

Di-O-acetylarabinal reacted similarly with acetylacetone to give the anomeric mixture in the same ratio as the acetylxylal. Consequently, both reactions must proceed via a common intermediate (1, R = H), the anomeric distribution being controlled by the steric factor.

Other examples are summarised in Table 1. The major products from tri-O-acetyl-glucal, -allal, and -galactal were Ethyl benzoylacetate and ethyl 2-oxocyclohexanecarboxylate did not react with the acetylated glycals in the presence of of a catalytic amount of the Pd complex but did react in the presence of BF_3 . However, dipivaloylmethane, hexafluoroacetylacetone, cyclohexane-1,3-dione, isopropylidene, and dimethyl malonate did not react even in the presence of BF_3 .

The C-glycosidation reactions described here provide a new and simple entry to chiral synthons involving versatile β -dicarbonyl functions.

Received, 13th August 1982; Com. 968

References

- 1 R. J. Ferrier and N. Prasad, J. Chem. Soc. C, 1969, 570.
- 2 R. D. Dawe and B. Fraser-Reid, J. Chem. Soc., Chem. Commun., 1981, 1180.
- 3 K. Takiura and S. Honda, Carbohydr. Res., 1972, 21, 379.
- 4 L. V. Dunkerton, K. T. Brady, and F. Mohamed, *Tetrahedron Lett.*, 1982, 23, 599.